ISSN:2229-6247
Jianhua GUO, Int.J.Buss.Mgt.Eco.Res., Vol 3(2),2012,498-505

Housing Price Forecasting based on Stochastic
Time Series Model

Jianhua GUO
Department of Mathematics, Hunan University of Science and Technology, Xiangtan, China
jhguo888@163.com

Abstract:

Whether the real estate industry robustly develops or not largely affects national macroeconomic
development and national quality of life. By analyzing monthly averaged prices of commercial residential
building in Changsha City from Jan, 2002 to Dec, 2011, this paper aims to reasonably construct a forecasting
model to predict short-term housing price trend and affords reference to homebuyer and investors, what's
more, affords technical support to government’s policy making. First, how to select rational forecasting
model is discussed, and then a price forecasting ARMA model is constructed, lastly, empirical analysis is put
forward.
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1. INTRODUCTION

Commercial housing price affects national macroeconomic development and national quality of life in a
large extent. Variation of commercial housing price also deeply impact the running of national economy,
so, study on housing price is a significant job.

So far, many scholars studied influencing factor of housing price and acquired plenty of achievement, but
the quantitative research about housing price is in the infant stage. Among which, Malpezzi(1999) studied
133 American cities’ commercial housing price index and concluded that the housing price is not a
random walk but partly predictable. Clapp J.H. and Giaccotto C.(2002), by means of autoregression
model and relying on the past quarterly housing prices during 1976 and 1997, forecasted the next
quarterly price. Seko(2003) studied the relationship between dwelling price and macro economy in Japan.
Wedyawati W. and Meiliu L.(2004) made a price for commercial residential building by constructing data
mining system between homebuyer and seller and by aid of regression technique. Okmyung B.(2004)
compared the parametric and nonparametric price forecasting methods. Bradford C. et al(2004)
compared 4 housing price forecasting methods including Dubinrsquos -krigining local forecasting model,
Clapprsquou local regression model, local instance forecasting and nearest-neighbor method.
Anglin(2006),by introducing the averaged growth rate of lagged 3-term housing prices, CPI, interest rate
of mortgage lending and rate of unemployment and constructing VAR model, forecasted the housing price
variation in Toronto. Liu,J.G. and Zhang,X.L. et al(2006) estimated property price making use of
fuzzy-neural network technique. Zhou,Wei-Xing and Didier,S.(2008) analyzed the housing price indexes
of Las Vegas during June,1983 and March, 2005 and found out the seasonal trend, then, they forecasted
the next year’s housing price index by moving average method. Min Hwang John M. Quigley(2010), based
on Singaporean housing prices during 1990 and 2000, constructed a price forecasting model and found
that the housing price submitted to mean-reversion model and was in connection with region.

2. MARKET MODELS

Time series analysis is a widely used quantitative analyzing method and time series model, including
linear model and nonlinear model, is an important kind of economic model to depicting economic data’s
evolving process. Linear model comprise of AR model, MA model and ARMA model, etc., as to any time

www.ijomer.com 498



Jianhua GUO, Int.J.Buss.Mgt.Eco.Res., Vol 3(2),2012,498-505

series, we can ascertain whether it is stationary time series or not by unit-root testing, i.e., the time series
is stationary when all characteristic roots are bigger than 1.what's more, if the autocorrelation coefficients
with order bigger than 3 all located in confidence interval and converging to zero, we also consider the
time series to be stationary, and vice verse.

2.1 AR model

As to time series{X,}, if there is

Xi =@ X g+ X ,++9, X, +& 1)

Then, {Xt}is called an autoregression time series, and (1) is called an AR(p) model. Where
$y,4,,+, ¢, are autoregression coefficients, &, ~ N(0,6%)andE(g, X, ) =0,i=1--, p. If lagged

operator B is introduced, then, X,, =BX,, X, , =B*X,, ... , X, =B"X, ,and (1) can be

transferred into

X, =#BX, +#,B’X, +--+9,B°X, +¢, )
Further more, denoting ¢(B) =1—¢,B — ¢,B* —--- — ¢,B", then
#(B)X, = ¢, (3

We call@(B) = Qis the characteristic equation of the autoregression model AR(p), which is called a

stationary autoregression model, if all of characteristic roots 4,,i =1,---, p of #(B) = O are located outside
the unit circle, i.e.,
|/1i |>1,i:1,"',p (4)

A time series evolving as a stationary model AR(p) is called a stationary AR(p) time series. The necessary
and sufficient conditions for a stationary time series to be an AR(p) time series is that the partial

correlation function is p-step clipped, i.e., {Xt}only has p nonzero partial correlation coefficients i/, .
In fact, because of the randomicity of sample, all y,, will not equal to zero though k>p, instead,
Vi ~ N(0,1/n) , where n denotes the sample length, and as for enough large n, there is

P{lyv, < 2/\/5}: 0.955, thus, we generally recur to interval-testing method to ascertain whether a
time series is an AR(p) time series or not.

Note, if {Xt}is an AR(p) time series, the partial correlation functiony,, is p-step clipped, but its

autocorrelation function p, is trailing, i.e., attenuating according to a negative exponential function.
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2.2 MA model

As to time series{X,}, if

X,=¢—-6¢,-0,,——0¢ (5)

q¢t-q
Then, {Xt}is called a moving average time series, and (5) is called a MA(q) model. Where

0, 02,---,19p are moving average coefficients. Similarly, if lagged operator B is introduced, and denoting

0(B)=1-6,B—0,B*—---—0_B", (5) can be transferred into

q

X, =0(B)¢, (6)
We call@(B) = Qis the characteristic equation of the moving average model MA(q), which is called a
reversible moving average model, if all of characteristic roots A,,i =1,---, p of @(B) =0 are located

outside the unit circle, i.e., |4 [>L1i=1---,p

A time series evolving as a reversible model MA(q) is called a reversible MA(Q) time series. The
necessary and sufficient conditions for a stationary time series to be an MA(q) time series is that the auto

correlation function is g-step clipped, i.e., {Xt}only has g nonzero auto correlation coefficients p, . It
means that, as to a MA(q) time series, X,and X are irrelevantwhen|t—S[>(.

In fact, because of the randomicity of sample, all p, will not equal to zero though k>g, instead,

£ ~ N(O, —(l+ ZZ:,OI )), where n denotes the sample length, and as for enough large n, there is
i=1

P{l p, I<—= \/_ 1+ ZZA }=10.955, thus, we generally recur to interval-testing method to ascertain

whether a time series is an MA(q) time series or not.

Similarly as AR(p) time series, if {Xt}is a MA(q) time series, the auto correlation function p, is g-step

clipped, but its partial correlation functiony,, is trailing, i.e., attenuating according to a negative

exponential function.
2.3 ARMA model

If ime series{ X } satisfies

=X+ X L, +”'+¢pxt—p te —0&,—0,6, _”'_Hq‘c"t—q (7)

Then, we call a autoregression-moving average time series, and call (7) a autoregression-moving average
model, i.e., ARMA(p,q) model.
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Where ¢, @,,-+,9,.,6,,0,,---,0,and&,_,,---,&_, are same as in subsection 2.1 and subsection 2.2.
Also, when introducing lagged operator B, (7) become into

#(B)X, =0(B)s, (8

Obviously, AR(p) model and MA(q) model are special cases of ARMA(p,q) model.

If a stationary time series{Xt}has clipped partial correlation function and trailing autocorrelation function,
{X,}is an AR time series; If a stationary time series{ X, }has clipped autocorrelation function and trailing
partial correlation function, {X,}is a MA time series; If the partial correlation function and autocorrelation

function of {X, }all are trailing, it is an ARMA time series.

Note

1) In reality, many time series are not stationary time series, then, we can translate them into stationary
ones by difference method.

2) We can make use of the residual error testing method or fitting testing method to decide whether an
AR(p) model, MA(g) model or an ARMA(p,q) model is appropriate to depict a time series or not.

3. SAMPLING AND MODELING

3.1 Sampling and stationarity test

In this paper, we select monthly housing prices of Changsha City from Jan,2009 to Dec,2011(shown in
figure 1) as within sample data for modeling, while selecting monthly housing prices of January and
February, 2012 to detect price forecasting precision.

First, as to figure 1, we can see that there is visible uptrend component in price series and the price series
is non-periodic, so, it is reasonable to decide the price series be non-stationary. In addition, the
autocorrelation function is attenuating as a smooth exponential function while the partial correlation
function is clipped with positive peak value, which, just as unit-root testing, shows the price series is
non-stationary, see figure 2 and figure 3, respectively. Therefore, we make differential operation for the
original housing price series (see figure 4), according to its autocorrelation function and partial correlation
function, as well as unit-root testing (see figure 5 and figure 6, respetively), we can ascertain that the
differenced series is stationary.
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Figure 1 The housing price series of Changsha City during Jan, 2009 and Dec, 2011
(Unit: CNY per square meter)
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Figure 2 Figure of autocorrelation function and

partial correlation function of price series
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Figure 3 Unit-root test results
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Figure 4 The differenced price series of the original housing price series
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Figure 5 Figure of autocorrelation and partial Figure 6 Unit-root test results of the
correlation functions of the differenced price series differenced price series

3.2 Modeling and Forecasting

According to figure 5, all autocorrelation coefficients and partial correlation coefficients locate in
confidence interval when k>1, and convergence to zero, so, we can model the original price series with
one of the ARI(1,1),MAI(1,1) or ARIMA(1,1,1) models. Relying on the EVIEWS software, the AIC values of
three models are 12.44865, 12.38843, 12.44639, respectively, and by means of theory of minimizing
criterion function, we first select MAI(1,1) as our candidate time series model. However, the AIC value is
not the sufficient condition for selecting the optimal model. Here, we do significance test for parameters of
the selected model or do test for randomness of residual error, if pass the test, the selected model with
least AIC value is the optimal model, or else, select model with minor AIC value and decide whether
parametric test or residual error test passed, and so on, until the appropriate model is decided.

In this paper, after trial and error, the ARIMA(1,1,1) is identified as the optimal one. Come next, we
estimate model’s parameters. Among all favorite parameter estimation methods, including moment
estimation, maximum likelihood estimation and nonlinear least-square(NLS) estimation, etc, here, in
EVIEWS software, we adopt NLS method to estimate parameters, results as shown in figure 7.
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Figure 7 estimation of ARMA model

Aprice, =69.0668 + 0.11223Aprice, , + &, —0.395474¢, , (9)

The randomicity of residual error series, i.e., all autocorrelation coefficients come close to zero when K>1,
is an important indicator to decide a model be appropriate or not. Shown as in figure 8, all residual errors
are minute and autocorrelation coefficients and partial correlation coefficients all locate in confidence
interval, as well as, the P-values of Q statistic are much bigger than 0.05, so, it's reasonable to consider
the residual error series as a white noise series and the ARIMA(1,1,1) model is appropriate to depict the

housing price series.
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Figure 8 white noise test of the residual error series
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According to the constructed ARIMA(1,1,1) model, we forecast the next two months’ housing prices in

table 1 as follows

Table 1 the forecasted housing price and relative error to actual price

Month  Actual housing price Forecasted value Relative error
Jan,2012 6154 6202 0.78%
Feb,2012 6129 6225 1.56%

4. CONCLUSION
The ARMA model forecasts next values based on preceding time series data and it can be used to

forecast short-term housing price. The empirical analysis indicates that this model’s forecasting precision

is satisfactory, and only with some simple modification, this model may be used in other industries.
Generally speaking, housing price affected by many factors is nonlinear changing, but there few of
literatures study on housing price series from nonlinear point of view, so, we can say that the ARMA

model is a comparatively excellent forecasting model for its convenience of application and its strict

mathematical assurance, besides, differ from other models such as regression model relying on great

deal of related data , the ARMA model only rely on historical data of some certain variable, which make its

unigue predominance in short-term forecast.
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